As thin plates have relatively big thickness ratios, their elastic buckling usually occurs before the yielding. From beginningof the previous century, many researchers have considered various in-plane loading states on thin plates and have strived to find simple equations to predict the buckling load. However, there are few valid equations with negligible errors for a thin plate, when it is under all of in-plane loads. In this paper, using energy method, an applicable formula is suggested for a simply supported rectangular plate, which is under biaxial and shear loads. The biaxial loads can be applied in the compressive/compressive, compressive/tensile, and tensile/tensile states on the plate. Generally, 15129 examples are considered for this problem. The aspect ratio of plates variesfrom 1 to 5 and for each case and with the known load ratios, the plate buckling coefficient is calculated. Then, by using the regression techniques and interpolation, it is tried to estimate a simple equation with minimum error to predict the buckling load. The confirmed results show that for the biaxial compression and shear state, the maximum error is 8% and for the compression–tension–shear and biaxial tension and shear states, it increases until20%.