Multilayer thin films prepared using the sol-gel process have been used in many antireflection applications. In this paper, antireflective nanoscale multilayer TiO2-SiO2 coatings were formed on both sides of the glass substrates by combining sol-gel method and dip coating techniques. The coatings were carried out using tetraethyl orthosilicate as precursor for SiO2 and tetrabutyl orthotitanate as precursor for TiO2. The coatings prepared in this work were characterized using scanning electron microscope, Fourier-transformed infrared spectrophotometer and UV-Visible spectrophotometer. The SiO2 top layer coatings showed excellent antireflection in the wavelength range of 400-800 nm where the transmittance of glass substrate is significantly lower. By increasing the number of double TiO2-SiO2 layers, the transmission of the coated glasses increased due to applied multilayer coating properties. Six-layer sol-gel TiO2-SiO2 coatings showed the highest visible transmittance about 99.25% at the band of 550-650 nm.