Tris (2-methyl-1-aziridinyl) phosphine oxide (MAPO) is extremely poisonous and persistent in aqueous media. An efficient UV/nanoTiO2 process was employed for its mineralization in a high duty falling film photo-reactor based on an experimental design scheme that considers interactions between the main variables. The influencing variables and their range were determined with preliminary studies. The results show substrate mineralization to some extent under mild conditions of: T = 30 °C, pH = 8.5, [MAPO]0 = 60 mg L-1 and [TiO2] =110 mg L-1. The relative importance of the influencing parameters were initial pH > temperature > [MAPO]0 > [TiO2]; while the interdependence of all the parameters was significant. Accordingly, a reduced quadratic expression was developed. Meanwhile, mineralization kinetic studies, based on chemical oxygen demand, revealed a power law model with order of 2.6 during process time until 150 min.