این پایان نامه در مورد توابع پایه شعاعی و استفاده از آنها در حل عددی معادلات انتگرال می باشد. در فصل اول تاریخچه معادلات انتگرال و تعاریف و مفاهیم اولیه آورده شده است. در فصل دوم مفاهیم اساسی توابع پایه شعاعی مورد بررسی قرار گرفته است. در فصل سوم به حل عددی معادلات انتگرال فردهلم یک بعدی با استفاده از توابع پایه شعاعی پرداخته شده است. در فصل چهارم حل عددی معادلات انتگرال فردهلم دو بعدی روی دامنه های مستطیلی با استفاده از توابع پایه شعاعی مورد مطالعه قرار گرفته است. در فصل پنجم حل عددی معادلات انتگرال فردهلم دو بعدی روی دامنه های غیر مستطیلی توسط توابع پایه شعاعی به همراه تحلیل خطا مورد بحث و بررسی قرار گرفته است. در هر فصل چند مثال عددی برای ارائه کارایی روش آورده شده است. همچنین تمامی محاسبات با استفاده از نرم افزار Mapleصورت گرفته است.