Let $M=\{\,1,2,\cdots,n\,\}$ and let $\V=\{\,I\subseteq M: 1\in I\,\}$. Denote $M\setminus{I}$ by $I^c$ for $I\in \V.$ The goal of this paper is to investigate the solution and the stability using the alternative fixed point of generalized cubic functional equation \begin{equation*} \sum_{I\in\V}f\Big(\sum_{i\in I}a_ix_i-\sum_{i\in I^c}a_ix_i\Big) =2^{n-2}a_{1} \sum^{n}_{i=2}a^2_{i}\big[f(x_{1}+x_{i})+f(x_{1}-x_{i})\big] +2^{n-1}a_{1}\Big(a^2_{1}-\sum^{n}_{i=2}a^2_{i}\Big)f(x_{1}) \end{equation*} In $\beta$--Banach modules on Banach algebras, where $a_{1},...,a_{n} \in \mathbb{Z}\setminus\{0\}$ with $a_{1}\neq\pm1$ and $a_{n}=1.$