1403/11/05

خسرو سایوند

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم ریاضی و آمار
نشانی: ملایر گروه ریاضی دانشگاه ملایر
تلفن: 081-33398981

مشخصات پژوهش

عنوان
On dual Bernstein polynomials and stochastic fractional integro-differential equations
نوع پژوهش
JournalPaper
کلیدواژه‌ها
dual Bernstein polynomials, error analysis, operational matrix, stochastic fractional integro-differential equations
سال
2020
مجله Mathematical Methods in the Applied Sciences
شناسه DOI
پژوهشگران Khosro Sayevand

چکیده

In recent years, random functional or stochastic equations have been reported in a large class of problems. In many cases, an exact analytical solution of such equations is not available and, therefore, is of great importance to obtain their numerical approximation. This study presents a numerical technique based on Bernstein operational matrices for a family of stochastic fractional integro-differential equations (SFIDE) by means of the trapezoidal rule. A rele- vant feature of this method is the conversion of the SFIDE into a linear system of algebraic equations that can be analyzed by numerical methods. An upper error bound, the convergence, and error analysis of the scheme are investigated. Three examples illustrate the accuracy and performance of the technique