1404/02/30

خسرو سایوند

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم ریاضی و آمار
نشانی: ملایر گروه ریاضی دانشگاه ملایر
تلفن: 081-33398981

مشخصات پژوهش

عنوان
On fractional Kakutani–Matsuuchi water wave model: Implementing a reliable implicit finite difference method
نوع پژوهش
JournalPaper
کلیدواژه‌ها
backward Euler differences, finite difference method, fractional water wave equation, Riemann–Liouville fractional derivatives, trapezoidal quadrature rule
سال
2021
مجله Mathematical Methods in the Applied Sciences
شناسه DOI
پژوهشگران Khosro Sayevand

چکیده

In this study, a reliable implicit finite difference method based on the modified trapezoidal quadrature rule, backward Euler differences, nonstandard central approximations, and the Hadamard finite-part integral is being considered to solve a viscous asymptotical model named as fractional Kakutani–Matsuuchi water wave model. The fractional derivative is used in the Riemann–Liouville sense. Based on the properties of Brouwer's fixed-point theorem, the existence, uniqueness, convergence, and stability of the proposed method are proved. Furthermore, we show that the global convergence order of the method in maximum norm is O ( 휏 , h min { 훽 ,3 − 훼 } ), where 0 <훼 ≤ 1and 훽> 0 are the order of fractional derivative and the Lipschitz constant. Also, 휏 and h are the time step and space step, respectively. Finally, several examples are used to illustrate the accuracy and performance of the method.