1404/01/01

خسرو سایوند

مرتبه علمی: استاد
ارکید:
تحصیلات: دکترای تخصصی
اسکاپوس:
دانشکده: دانشکده علوم ریاضی و آمار
نشانی: ملایر گروه ریاضی دانشگاه ملایر
تلفن: 081-33398981

مشخصات پژوهش

عنوان
On modified two-step interative method in the fractional sense: some applications in real world phenomena
نوع پژوهش
JournalPaper
کلیدواژه‌ها
Nonlinear equations; two-step methods; efficiency index; order of convergence; simple root; derivative of arbitrary real order.
سال
2019
مجله INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS
شناسه DOI
پژوهشگران Khosro Sayevand

چکیده

This study proposes a new two-step iterative scheme for solving nonlin- ear equations. This scheme is based on the Newton’s method, in which the order of convergence is 4. As this scheme requires two function evaluations and one derivative evaluation at each iteration, it is optimal in the sense of the Kung and Traub conjecture [20] and in terms of computational cost, and we show that its efficiency index is 1.587. Finally, using the proper- ties of a new derivative of arbitrary real order, our approach is extended and the convergence, stability and superiority of our suggested scheme is discussed