2024 : 12 : 19

Khosro Sayevand

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Mathematical Sciences and Statistics
Address: Malayer University
Phone: 081-33398981

Research

Title
Efficient algorithms for analyzing the singularly perturbed boundary value problems of fractional order
Type
JournalPaper
Keywords
Matched asymptotic expansion methodSingular perturbationBoundary value problemBoundary layerLocal fractional derivative
Year
2018
Journal Communications in Nonlinear Science and Numerical Simulation
DOI
Researchers Khosro Sayevand

Abstract

In this paper, we were concerned with the description of the singularly perturbed boundary value problems in the scope of fractional calculus. We should mention that, one of the main methods used to solve these problems in classical calculus is the so-called matched asymptotic expansion method. However we shall note that, this was not achievable via the existing classical definitions of fractional derivative, because they do not obey the chain rule which one of the key elements of the matched asymptotic expansion method. In order to accommodate this method to fractional derivative, we employ a relatively new derivative so-called the local fractional derivative. Using the properties of local fractional derivative, we extend the matched asymptotic expansion method to the scope of fractional calculus and introduce a reliable new algorithm to develop approximate solutions of the singularly perturbed boundary value problems of fractional order. In the new method, the original problem is partitioned into inner and outer solution equations. The reduced equation is solved with suitable boundary conditions which provide the terminal boundary conditions for the boundary layer correction. The inner solution problem is next solved as a solvable boundary value problem. The width of the boundary layer is approximated using appropriate resemblance function. Some theoretical results are established and proved. Some illustrating examples are solved and the results are compared with those of matched asymptotic expansion method and homotopy analysis method to demonstrate the accuracy and efficiency of the method. It can be observed that, the proposed method approximates the exact solution very well not only in the boundary layer, but also away from the layer.