2024 : 11 : 16
Mahmoud Moradi

Mahmoud Moradi

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Technical Engineering
Address:
Phone:

Research

Title
How the laser beam energy distribution effect on laser surface transformation hardening process; Diode and Nd:YAG lasers
Type
JournalPaper
Keywords
Industrial lasers Laser surface treatment AISI 4130 low alloy carbon steel Beam shape
Year
2020
Journal OPTIK
DOI
Researchers Mahmoud Moradi

Abstract

The laser surface transformation hardening (LSTH) of AISI 4130 steel by 1600 W high power diode laser (HPDL) and 700 W Nd:YAG lasers were investigated in this present study. The distribution influence, and the lasers beam shape; Top-hat in the HPDL and Gaussian distribution in the Nd:YAG laser, have been studied on the geometrical dimensions, and micro-hardness in hardened area (i.e.; depth, width, and angle of entry of hardened profile), micro-hardness deviation (MHD) from the row steel in geometric dimensions, and the ferrite’s percentage in hardened layer center. Microstructure evaluation of the laser hardened areas were performed by FESEM and optical microscopy. Based on the results, maximum hardness was created with the HPDL, and the geometrical dimension was more than the Nd:YAG laser. Also, MHD, and minor phase of ferrite in the HPDL laser surface hardening than the hardened layer in Nd:YAG laser, which is related to the higher laser absorption. Results show that, the hardened zone of HPDL is about 698HV0.1 with 1.02 mm depth, while for Nd:YAG laser is about 698HV0.1 with 0.98 mm depth. Comparing the results with the furnace hardening heat treatment (FHT) demonstrated that the hardness in diode laser and Nd:YAG laser hardening are 1.38 and 1.22 times of the hardness in FHT, respectively.