This article extends a random preventive maintenance scheme, called repair alert model, when there exist environmental variables that effect on system lifetimes. It can be used for implementing age-dependent maintenance policies on engineering devices. In other words, consider a device that works for a job and is subject to failure at a random timeX, and the maintenance crew can avoid the failure by a possible replacement at some random timeZ. The new model is flexible to including covariates with both fixed and random effects. The problem of estimating parameters is also investigated in details. Here, the observations are in the form of random signs censoring data (RSCD) with covariates. Therefore, this article generalizes derived statistical inferences on the basis of RSCD albeit without covariates in past literature. To do this, it is assumed that the system lifetime distribution belongs to the loglocation-scale family of distributions. A real dataset is also analyzed on basis of the results obtained