The interpolation method by radial basis functions is used widely for solving scattered data approximation. However, sometimes it makes more sense to approximate the solution by least squares fit. This is especially true when the data are contaminated with noise. A meshfree method namely, meshless dynamic weighted least squares (MDWLS) method, is presented in this paper to solve least squares problems with noise. The MDWLS method by Gaussian radial basis function is proposed to fit scattered data with some noisy areas in the problem’s domain. Existence and uniqueness of a solution is proved. This method has one parameter which can adjusts the accuracy according to the size of noises. Another advantage of the developed method is that it can be applied to problems with nonregular geometrical domains. The new approach is applied for some problems in two dimensions and the obtained results confirm the accuracy and efficiency of the proposed method. The numerical experiments illustrate that our MDWLS method has better performance than the traditional least squares method in case of noisy data.