2024 : 11 : 16
Mehdi Ghabooli

Mehdi Ghabooli

Academic rank: Associate Professor
ORCID: https://orcid.org/0000-0002-6173-7327
Education: PhD.
ScopusId: 55898222300
HIndex: 0/00
Faculty: agriculture
Address: Department of Plant Production and Genetics, Faculty of Agriculture, Malayer University, Malayer
Phone:

Research

Title
Inoculation and co-inoculation of alfalfa seedlings with root growth promoting microorganisms (Piriformospora indica, Glomus intraradices and Sinorhizobium meliloti) affect molecular structures, nutrient profiles and availability of hay for ruminants
Type
JournalPaper
Keywords
Alfalfa hay, FTIR spectroscopy, Nutrient availability, Piriformospora indica, Ruminal degradability
Year
2018
Journal Animal Nutrition
DOI
Researchers Mojtaba Yari ، Mehdi Ghabooli

Abstract

Inoculation of alfalfa seedlings with root growth promoting microorganisms under semi-arid climate condition may improve biomass production and nutritive value. The current study aimed to investigate the effect of inoculation of alfalfa seedlings with Piriformospora indica (Pi) and co-inoculating Pi with Glomus intraradices (Gi + Pi) or Sinorhizobium meliloti (Sm + Pi) on hay yield, chemical composition, molecular structures by Fourier transformed infrared (FTIR) spectroscopy, in situ ruminal degradability and in vitro gas production. Seedlings were grown in experimental pots in a greenhouse until first cut and then transferred outside and cut a further 4 times. Biomass yield was similar across the treatments. Acid detergent fiber (ADF) concentration was higher in Pi than in control hay, and ADF decreased further with co-inoculation (P < 0.05). The ether extract (EE) concentration was lower for Pi and Gi + Pi compared with control hay, and control, Pi and Gi + Pi hays had lower EE concentration compared with Sm + Pi (P < 0.05). The FTIR spectroscopic vibration peak height ratio related to proteins (amide 1 + amide 2): total carbohydrate ratio was lower for the inoculation treatments compared with control hay (P < 0.05). In situ ruminal degradability of dry matter and organic matter were higher for hay of inoculated and co-inoculated seedlings than for control hay (P < 0.05). In conclusion, hay of alfalfa seedlings inoculated and co-inoculated with root growth promoting microorganisms had improved nutritional value compared with hay from non-treated alfalfa seedlings, and co-inoculation was the most effective, however, changes were relatively minor.