سابقه و هدف: با توجه به اینکه کشاورزی مهمترین نقش را در تأمین امنیت غذایی برعهده دارد، تهیه نقشه ای که پراکندگی مکانی، وسعت اراضی و نوع محصولات کشت شده را با دقت بالایی نشان دهد، بسیار ضروری است. پوشش اراضی کشاورزی در فواصل زمانی نسبتا کوتاه، بسیار پویا و متغیر است. این موضوع، طبقه بندی محصولات زراعی روی تصاویر ماهواره ای را به کاری چالش برانگیز مبدل می کند. کمبود یا فقدان داده های دارای برچسب واقعیت زمینی نیز مزید بر علت است. بنابراین روشهایی که به نمونه های زمینی وابستگی کمتری دارند و از ویژگیهای فنولوژیک حاصل از سری زمانی باندها و شاخصهای گیاهی برای طبقه بندی محصولات استفاده می کنند، مناسبتر خواهند بود. هدف از این مطالعه استفاده از در روش یادگیری عمیق مبتنی بر شبکه های کانولوشن برای طبقه بندی محصولات کشاورزی و بهبود عمکرد این شبکه از طریق استفاده از کانالهای ویژگی محصولات بعنوان تصویر ورودی به شبکه و افزایش دقت طبقه بندی است. مواد و روشها: در این مطالعه از تصاویر باندهای مرئی و فروسرخ نزدیک ماهواره سنتینل-2 در 10 تاریخ مختلف از سال 2019 برای ناحیه ای واقع در ایالت آیداهو ایالات متحده آمریکا که یک منطقه مهم کشاورزی به شمار می رود و از لایه داده های زراعی(Cropland Data Layer) برای استخراج برچسب نوع محصولات در مزارع نمونه، استفاده گردید. سپس در نرم افزار متلب، سری زمانی باندها ساخته شد و با استفاده از آنها پروفیل زمانی NDVI برای شناسایی ویژگیهای فنولوژیکی منحصر به فرد برای هر محصول استخراج گردید. در ادامه توابعی که بر اساس ویژگیهای فنولوژیک هر محصول توسعه داده شده اند، بر روی سری زمانی باندها اعمال گردید و برای هر محصول یک کانال ویژگی به دست آمد که در دو فرآیند جداگانه، یکبار از باندها و بار دیگر از کانالهای ویژگی به عنوان ورودی به شبکه CNN استفاده گردید و شبکه، با استفاده از کانالهای ورودی و نمونه های زمینی، آموزش دیده و نتیجه عملکرد شبکه در طبقه بندی محصولات زراعی در سایت تست، مورد مقایسه قرار گرفت. نتایج و بحث: در مرحله اول، سری زمانی باندها، ورودی شبکه کانواوشنی عمیق را تشکیل دادند و شبکه در ناحیه آموزش، با استفاده از اطلاعات طیفی-زمانی باندها به عنوان کانالهای ورودی و نمونه های زمینی محصولات به عنوان برچسب، آموزش دید. به دلیل همپوشانی طیفی محصولات در برخی از دو