2024 : 12 : 19
Mahdi Rasekhi

Mahdi Rasekhi

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Mathematical Sciences and Statistics
Address:
Phone: 0813-33339843 داخلی 391

Research

Title
Bias-corrected Maximum-Likelihood Estimator for the Parameter of the Logarithmic Series Distribution and its Characterizations
Type
JournalPaper
Keywords
Cox-Snell bias-correction, Bootstrap bias-correction, Logarithmic series distribution, Maximum likelihood estimator, Monte Carlo simulation.
Year
2019
Journal Journal Of Statistical Research Of Iran
DOI
Researchers Mahdi Rasekhi

Abstract

In this article, we study parameter estimation of the logarithmic series distribution. A well-known method of estimation is the maximum likelihood estimate (MLE) and this method for this distribution resulted in a biased estimator for the small sample size datasets. The goal here is to reduce the bias and root mean square error of MLE of the unknown parameter. Employing the Cox and Snell method, a closed-form expression for the bias-reduction of the maximum likelihood estimator of the parameter is obtained. Moreover, the parametric Bootstrap bias correction of the maximum likelihood estimator is studied. The performance of the proposed estimators is investigated via Monte Carlo simulation studies. The numerical results show that the analytical bias-corrected estimator performs better than bootstrapped-based estimator and MLE for small sample sizes. Also, certain useful characterizations of this distribution are presented. An example via a real dataset is presented for the illustrative purposes.