2024 : 12 : 19
Mahdi Rasekhi

Mahdi Rasekhi

Academic rank: Assistant Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: Mathematical Sciences and Statistics
Address:
Phone: 0813-33339843 داخلی 391

Research

Title
The Odd Lindley Burr XII Model: Bayesian Analysis, Classical Inference and Characterizations
Type
JournalPaper
Keywords
Burr XII model; Bayesian estimation; Metropolis–Hastings Algorithm; Multi- censored data; Markov Chain Monte Carlo; Simulation study; Gibbs Algorithm
Year
2018
Journal Journal of Data Science
DOI
Researchers Mahdi Rasekhi

Abstract

In this work, we study the odd Lindley Burr XII model initially introduced by Silva et al. [29]. This model has the advantage of being capable of modeling various shapes of aging and failure criteria. Some of its statistical structural properties including ordinary and incomplete moments, quantile and generating function and order statistics are derived. The odd Lindley Burr XII density can be expressed as a simple linear mixture of BurrXII densities. Useful characterizations are presented. The maximum likelihood method is used to estimate the model parameters. Simulation results to assess the performance of the maximum likelihood estimators are discussed. We prove empirically the importance and flexibility of the new model in modeling various types of data. Bayesian estimation is performed by obtaining the posterior marginal distributions as well as using the simulation method of Markov Chain Monte Carlo (MCMC) by the Metropolis-Hastings algorithm in each step of Gibbs algorithm. The trace plots and estimated conditional posterior distributions are also presented.