2024 : 12 : 19
Mahdi Rezaei Sameti

Mahdi Rezaei Sameti

Academic rank: Associate Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: science
Address: Department of applied chemistry,Faculty science, Malayer University, Malayer, Iran
Phone: 32355404

Research

Title
The first-principle study of N2O gas interaction on the surface of pristine and Si-, Ga-, SiGa-doped of armchair boron phosphide nanotube: DFT method
Type
JournalPaper
Keywords
BPNTs, NMR, N2O adsorption, Ga-, Si- and SiGa-doped, DFT
Year
2020
Journal Iranian Journal of Physics Research
DOI
Researchers Mahdi Rezaei Sameti

Abstract

In present research, the electrical, structural, quantum and NMR parameters of interaction of N2O gas on the B and P sites of pristine, Ga-, Si- and SiGa-doped (4,4) armchair models of boron phosphide nanotubes (BPNTs) are investigated by using density functional theory (DFT). For this purpose, we consider seven models for adsorption of N2O gas on the exterior surfaces of BPNTs and then all structures are optimized by B3LYP level of theory and 6–31G (d) base set. The optimized structures are used to calculate the electrical, structural, quantum and NMR parameters. The computational results reveal that the adsorption energy of all studied models of BPNTs is negative values and all processes are exothermic and favorable in thermodynamic approach. When N2O gas is adsorbed from its O atom head on the B site of nanotube, N2O gas dissociated to O atom and N2 molecule. The adsorption energy of this process is more than those of other models and more stable than other models. In A, B and C models the global hardness decrease significantly from original values and so the activity of nanotube increases from original state. On the other hand, the electrophilicity index (ω), electronic chemical potential (μ), electronegativity (χ) and global softness (S) of the A, B and C models increase significantly from original value and the CSI values of the C model are larger than those of other models. The results demonstrate that the Ga-, Si- and SiGa- doped BPNTs are good candidates to adsorbing and making N2O gas sensor.