The substitution effect of a Ferro-magnet (FM) electrode by a half-metallic FM material La0.7Sr0.3MnO3 (LSMO) on charge current and spin-transfer torque (STT) components is studied in MgO-based double barrier magnetic tunnel junctions (DBMTJs) with a middle non-magnetic metal (NM) layer. Using non-equilibrium Green’s function (NEGF) formalism, it is observed that the current and STT components show oscillatory behavior due to quantum well states in the middle NM layer and resonant tunneling effect. We also study effect of difference in the thickness of the MgO insulators. Bias dependence demonstrate the magnitude enhancement of the current and in-plane STT in new asymmetric DBMTJs (A-DBMTJs) compared with symmetric DBMTJs (S-DBMTJs), however, perpendicular STT decreases in the A-DBMTJs. Results also show different behavior compared with conventional asymmetric MTJs and spin valves (SVs). Therefore, one can design new memory devices by means of suitable insulator and FM electrodes with proper thicknesses.