This research paper focuses on the optimal configuration of an outer rotor permanent magnet brushless DC (ORBLDC) motor. As torque ripple is a drawback associated with this type of motor, the study proposes an optimal design to minimize torque fluctuations. The proposed design approach considers factors such as slot width, pole arc (pole span), the number of slots, and the least common multiple factors between the number of poles and slots. Initially, the machine’s parameters and dimensions are determined using design equations, and then different configurations are evaluated using the finite element method to achieve reduced torque fluctuations. The findings demonstrate that the combined design methods employed effectively minimize output torque ripples. Considering various design factors and employing advanced optimal techniques can contribute to the development of more efficient and reliable motor designs as well as reducing torque ripples.