June 20, 2024
Alireza AbdiKian

Alireza AbdiKian

Academic rank: Associate Professor
Address:
Education: Ph.D in Theoretical Physics (Plasma)
Phone:
Faculty: science

Research

Title Cylindrical fast magnetosonic solitary waves in quantum degenerate electron-positron-ion plasma
Type Article
Keywords
Cylindrical geometry; magnetosonic solitary waves; quantum electron-positron-ion plasma
Journal PHYSICS OF PLASMAS
Researchers Alireza AbdiKian

Abstract

The nonlinear properties of fast magnetosonic solitary waves in a quantum degenerate electronpositron (e-p) plasma in the presence of stationary ions for neutralizing the plasma background of bounded cylindrical geometry were studied. By employing the standard reductive perturbation technique and the quantum hydrodynamic model for the e-p fluid, the cylindrical Kadomtsev- Petviashvili (CKP) equation was derived for small, but finite, amplitude waves and was given the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars. By a suitable coordinate transformation, the CKP equation can be solved analytically. An analytical solution for magnetosonic solitons and periodic waves is presented. The numerical results reveal that the Bohm potential has a main effect on the periodic and solitary wave structures. By increasing the values of the plasma parameters, the amplitude of the solitary wave will be increased. The present study may be helpful in the understanding of nonlinear electromagnetic soliton waves propagating in both laboratory and astrophysical plasmas, and can help in providing good agreement between theoretical results and laboratory plasma experiments.