آگاهی از گونه سفر و الگوی حرکت شهروندان همواره مورد توجه مدیران شهری در حوزه مدیریت حمل و نقل و ترافیکبوده است. بهنگام نبودن و هزینه اجرایی روش های سنتی جمع آوری اطلاعات مانند استفاده از پرسشنامه و ظهور فنآوری های جدید موجب شده است تا از ابزارهای ارتباطی همچون تلفن همراه جهت جمعآوری و تحلیل دادههای ترافیکی استفاده شود. در این میان قابلیت های شبکه های وای-فای تلفن همراه همچون عمومیت، قابلیت دسترسی بالا و هزینه پایین، مورد توجه سامانههای حمل و نقل هوشمند بوده است.در این پژوهش با استفاده از تعریف سه ویژگی بر روی سیگنال های جمع آوری شده از وای-فای کاربران و بهرهگیری از مدل شبکه فازی-عصبی تطبیقی، کاربران ناحیه تحت پوشش در سه دسته طبقه بندی میگردند. این سه دسته عبارتند از: عابرین پیاده، خودروهای عبوری و کاربرانی که در ناحیه مذکور توقف طولانی مدت داشته اند.. نتایج نشان میدهد، مدل پیشنهادی به ازای بکارگیری روش خوشه بندی کاهشی برای تعیین تابع عضویت اولیه ویژگیها توانسته است با دقت 83 درصد کاربران مذکور را طبقه بندی نماید .همچنین میزان صحت و بازخوانی تشخیص خودروهای عبوری در این ناحیه به ترتیب 75 و 90 درصد است.