In this study, we employed density functional theory (DFT) to investigate intermolecular interactions in binary systems of eucalyptol with 2-alkanol (from 2-propanol to 2-hexanol) and compared these findings with the experimental data of density and viscosity. The DFT calculations revealed key trends in the molecular interactions, such as the hydrogen bonding strength, across the studied mixtures. Although the DFT computations were calculated in the gas phase, the agreement between the predicted intermolecular interactions and the experimental measurements is remarkable. These computational results were validated by experimental data, which confirmed the presence of strong molecular interactions. This reasonable alignment between theory and experiment indicates the power of integrating computational and experimental approaches to study the molecular behavior of mixtures.