Constructing pair-copula using the minimum information approach is an appropriate and flexible way to survey the dependency structure between variables of interest. Minimum information pair-copula method approximates multivariate copula by applying some constraints between desired variables that are elicited from the data itself or experts’ judgment. In minimum information pair-copula, selecting basis constraints is a challenge. In this article, we apply genetic algorithms as a heuristic way to select basis constraints to optimize approximated pair-copula. The results gained show that our method optimizes model selection criteria and lead to better pair-copula approximation. Finally, we apply our proposed method to approximate pair-copula density in real dataset.