2024 : 12 : 19
mahmoud naseri

mahmoud naseri

Academic rank: Professor
ORCID:
Education: PhD.
ScopusId:
HIndex:
Faculty: science
Address:
Phone: 08132355404

Research

Title
Enhanced microwave absorption performance of graphene/doped Li ferrite nanocomposites
Type
JournalPaper
Keywords
Thermal treatment method Polymerization method RGO/Li-Co nanocomposite Electromagnetic parameters Microwave absorption
Year
2021
Journal ADVANCED POWDER TECHNOLOGY
DOI
Researchers mahmoud naseri

Abstract

In the present study, Microwave absorbing Li-Sr, Li-Co ferrite nanoparticles and RGO/Li-Sr, RGO/Li-Co ferrite nanocomposites containing Li ferrite and reduced graphene oxide (RGO) were synthesized to further improve the microwave absorption performance of Li ferrite nanoparticles (LiFe5O8). The Li-Sr and Li-Co nanoparticles were synthesized by thermal treatment method, the RGO/Li-Sr and RGO/Li-Co nanocomposites were obtained by a polymerization method and were characterized by different techniques. The electromagnetic wave absorption properties of the samples were evaluated by vector network analyzer (VNA) in the frequency range of 2–18 GHz. The magnetic and dielectric loss, impedance matching, and electromagnetic wave absorption of the samples are significantly improved through the addition of RGO. Experimental results revealed that the RGO/Li-Co nanocomposite considerably increased microwave absorption. The minimum reflection loss (RL) of RGO/Li-Co also was found to reach 46.80 dB at the thickness of 3 mm and the effective absorption bandwidth (-10 dB) amounted to 6.80 GHz (from 10.52 to 17.32 GHz), which was much higher in comparison with pure Li and Li-Co ferrites nanoparticles. Due to the synergistic effect between magnetic loss and dielectric loss and the good impedance matching, the RGO/Li-Co nanocomposite may be regarded as a new candidate for microwave absorbing materials characterized with a broad effective absorption bandwidth at thin thicknesses.