The study examines the liquid density and viscosity behavior of ethyl laurate (EL) mixed with different 2-alkanols (2-propanol, 2-butanol, 2-pentanol, and 2-hexanol) over the temperature range of 293.15 to 323.15 K, with the goal of clarifying the intermolecular interactions and deviations from ideality. Our experimental observations showed that all tested mixtures displayed positive excess molar volumes and negative viscosity deviations, implying that the forces between EL and each 2-alkanol are relatively weak. The significant structure theory was then utilized to represent the pure-component viscosities, yielding a maximum viscosity discrepancy of 1.691 % for 2-pentanol. For the binary systems, we introduced a new correlation whose calculated values aligned closely with the measurements, demonstrating a maximum variation of only 2.01 % for the EL + 2-hexanol mixture, which highlights the predictive capability of the proposed model. The performance of this model was compared to earlier models such as Nissan-Grunberg, Hind, Kendall-Monroe, Arrhenius, and other models. Our results demonstrate that the new model offers improved accuracy, albeit with more complex parameter